

ASSET LIABILITY MANAGEMENT

João Carvalho das Neves Professor Leadership & Finance, ISEG jcneves@iseg.ulisboa.pt

INTRODUÇÃO

ASSET LIABILITY MANAGEMENT (ALM)

- Ativos e passivos dos bancos e fundos de pensões são muito sensíveis às oscilações de taxas de juro
- ALM trata de gerir riscos financeiros que surgem devido a desfasamentos entre fluxos e maturidades de ativos e passivos, como parte de uma estratégia financeira de um banco ou fundo de pensões.
- Não se trata de mitigar riscos imediatos. O ALM tem uma perspetiva de longo prazo.
- Inclui a alocação e gestão de ativos, capitais próprios, passivos, taxa de juros e risco de crédito, sendo necessário ter em consideração o ambiente regulatório e as exigência de capital.
- ALM procura proteger a potencial erosão do valor do capital próprio e contribuir para uma rendibilidade adequada com um nível aceitável de risco.
- Deve ter presente os ciclos económicos e as pressões ocasionais que possam surgir nos mercados financeiros

ALM NA BANCA

 $Margem\ Financeira\ \% = \frac{Juros\ e\ rendimentos\ similares\ -\ Juros\ e\ encargos\ similares}{Ativos\ remunerados}$

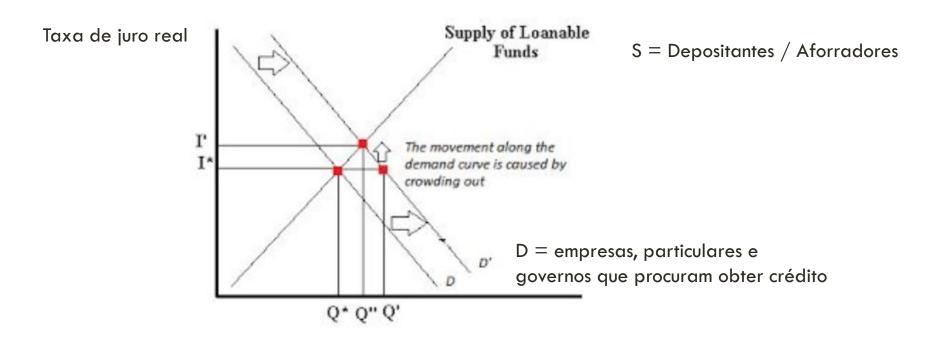
RISCO DE TAXA DE JURO: UM DOS GRANDES DESAFIOS DA BANCA E FUNDOS DE PENSÕES

- Alteração das taxa de juro impacta no balanço (ativos e passivos) e na demonstração de resultados (margem financeira)
- Risco de preço
 - Quando a taxa de juro aumenta o valor de mercado dos ativos e das obrigações cai
- Risco de reinvestimento
 - Quando a taxa de juro cai, o cupão dos pagamentos das obrigções são reinvestidos a uma taxa de juro menor

© ICNeves, ISEG 5

TAXAS DE JURO E CURVAS DE RENDIBILIDADE ATÉ À MATURIDADE

DETERMINAÇÃO DAS TAXAS DE JURO


Loanable Funds Theory (Teoria dos fundos emprestásveis)

Mensuração das taxas de juros

- Yield to Maturity (YTM) Taxa de juro até à Maturidade
- Taxa de desconto bancário

Componentes das taxas de juro

"LOANABLE FUNDS THEORY" (TEORIA CLÁSSICA ECONÓMICA)

YIELD TO MATURITY (TAXA DE RENDIBILIDADE ATÉ À MATURIDADE)

- A Taxa de Rendibilidade até à Maturidade (YTM) é a rendibilidade de um título se for mantido em carteira até o vencimento. Significa que é a taxa interna de rendibilidade (TIR) do investimento realizado no título se o investidor o mantiver até o vencimento, com todos os pagamentos feitos conforme programado, assumindo-se que os valores recebidos nesse período são reinvestidos à mesma taxa.
- Daí o risco de taxa de juro no caso de ter de vender o título antes da maturidade e risco de reinvestimento por não existir condições de mercado para reinvestir os fluxos obtidos à mesma taxa da YTM.

$$B_0 = \sum_{i=1}^{n} \frac{FC_i}{YTM}$$

TAXA DE DESCONTO BANCÁRIO

É uma taxa de juro de curto prazo. É um contrato através do qual o Banco adianta, o montante de um crédito ainda não vencido que o beneficiário tem sobre terceiro, adquirindo a titularidade desse crédito de maneira a reembolsar-se pela sua cobrança, quando o mesmo chegar ao vencimento, deduzindo o juro até à data de vencimento (desconto).

$$Ds = N \times r \times \frac{T}{360}$$

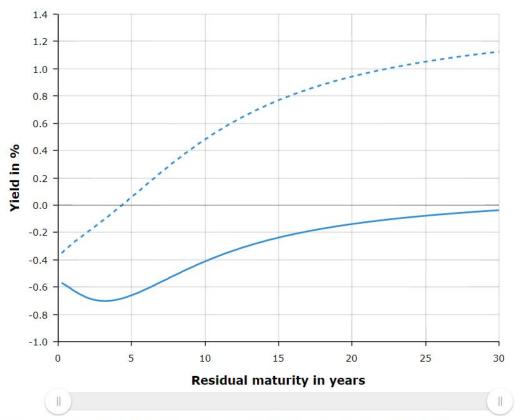
Ds=Desconto

B = Valor nominal do título

r = Taxa de juro anual nominal

T = tempo em dias que decorre até ao vencimento

DETERMINATES DAS TAXAS DE JURO


Base: Taxa de juro sem risco

Acrescido de prémios de risco:

- Risco de incumprimento (Default risk)
- Risco de inflação (Inflation risk)
- Risco de liquidez (Liquidity risk)
- Risco de vencimento antecipado (Call risk)
- Risco de maturidade (Maturity risk)

 $r = r_f + Pr$ émio de risco

EURO AREA YIELD CURVES

Dashed lines indicate the spot rate based on all government bonds; solid lines on AAA-rated bonds only.

OS BANCOS DÃO-SE MELHOR COM "UPWARD-SLOPING YIELD CURVES" CURVAS CRESCENTS)

- A generalidade dos bancos têm gap positivo entre as maturidade media dos ativos e a maturidade media dos passivos
- 2. Se a curva for crescente os rendimentos de ativos com maturidades longas ultrapassam as despesas com os passivos de maturidades mais curtas. Consequentemente terão uma margem financeira positiva
- 3. Pelo contrário se a curva for decrescente tenderão a ter margens financeiras negativas

YIELD SPREAD COMO PREVISÃO DE CRISES (DATA: 2 ABRIL 2020)

Chart by first tuesday

Data courtesy of the Federal Reserve

RISCO DE TAXA DE JURO E GAP MANAGEMENT

O QUE OS BANCOS PROCURAM É PROTEGER A MARGEM FINANCEIRA DE ALTERAÇÕES ADVERSAS DAS TAXAS DE JURO

 $Margem\ Financeira\ = Juros\ e\ rendimentos\ similares\ -\ Juros\ e\ encargos\ similares$ $MF\ = JRS-\ JES$

 $Margem\ Financeira\ \% = \frac{Juros\ e\ rendimentos\ similares\ -\ Juros\ e\ encargos\ similares}{Ativos\ remunerados}$

 $Margem\ Financeira\ \% = \frac{Margem\ Financeira}{Ativos\ remunerados}$

UMA DAS ESTRATÉGIAS DE COBERTURA DE RISCO DE TAXA DE JURO (INTEREST RATE HEDGING STRATEGIES) USADAS HOJE É "INTEREST SENSITIVE GAP MANAGEMENT"

As técnicas de Gap Management exige uma análise das maturidades dos ativos e passivos sensiveis às a variações de taxas de juro (interest –bearing assets and interest-bearing liabilities)

A minimização do risco de taxa de juro consegue-se procurando que o volume dos ativos e o volume de passivos que são afetados pela alteração da taxa de juro de mercado sejam tanto quanto possivel idênticos.

INTEREST SENSITIVE ASSETS AND LIABILITIES

"Interest Sensitive Assets" (ISA) são ativos bancários, principalmente obrigações, empréstimos concedidos e leasings. Esses ativos são reavaliados com a alteração das taxas de juro no mercado.

"Interest Sensitive Liabilities" (ISL) são passivos bancários, principalmente depósitos remunerados, empréstimos obtidos e outros passivos que estão sujeitos a reavaliação quando há alteração das taxas de juro no mercado.

INTEREST SENSITIVE GAP

Interest sensitive gap = Interest sensitive assets - Interest sensitive liabilities = 0IS GAP = ISA - ISL

Se o montante de ativos e o montante de passivos sensíveis às oscilações das taxas de juro forem iguais, o GAP é zero e o risco está imunizado

Interest sensitive positive gap = Interest sensitive assets - Interest sensitive liabilities > 0

Neste caso o banco é "Asset Sensitive"

Interest sensitive negative gap = Interest sensitive assets - Interest sensitive liabilities < 0

19

Neste caso o banco é "Liability Sensitive"

O IMPACTO FINANCEIRO DEPENDE DO PESO QUE ESTE TEM NO CONJUNTO

$$IS\ GAPRelativo = rac{IS\ GAP}{Dimens\~ao\ da\ Institui\~ç\~ao}$$

Há quem meça a dimensão em função dos ativos

A minha preferência:

Se o banco é "Asset Sensitive"

$$IS\ GAPRelativo = \frac{IS\ GAP}{Total\ dos\ ativos}$$

Se o banco é "Liability Sensitive"

$$IS\ GAPRelativo = \frac{IS\ GAP}{Total\ dos\ passivos}$$

INTEREST SENSITIVITY RATIO

Interest Sensitivity Ratio (ISR) =
$$\frac{ISA}{ISL}$$

- Se o rácio for superior a 1 o banco é "Asset Sensitive)
- Se o banco tiver um rácio inferior a 1 será "Liability Sensitive"
- Se o rácio for igual a 1 o banco está imunizado ao risco de taxa de juro

A GESTÃO DO GAP É COMPLEXA E EXIGE DA GESTÃO AS SEGUINTES DECISÕES:

- Período de tempo sob o qual a margem financeira vai ser gerida para alcançar um determinado valor
- 2. Subperíodos em que vai ser divido o período de planeamento e gestão do GAP (Maturity Buckets)
- 3. Qual o objetivo de margem financeira em % dos ativos remunerados
- 4. Se a gestão pretender aumentar a margem financeira terá de desenvolver previsões de evolução das taxas de juro e como realocar os ativos remunerados e os passivos para aumentar o spread entre rendimento de juros e gastos com juros
- 5. Definir qual o montante de volumes de "Interest-Sensitive Assets" e "Interest Sensitive Liabilities" que pretende ter no conjunto dos ativos e passivos

ANÁLISE DO GAP

			GAP	GAP
Periodos	ISA	ISL	Periodico	Acumulado
Dia 1	40	30	10	10
Dias 2 a 7	120	160	-40	-30
Dias 8 a 30	85	65	20	-10
Dias 31 a 90	280	250	30	20
Dias 91-120	455	395	60	80
•••	•••	•••	•••	•••
•••	•••			
•••	•••	•••	•••	•••

A MARGEM FINANCEIRA É INFLUENCIADA POR DIVERSOS FATORES

Alterações das taxas de juro base (Euribor, etc.)

Alteração dos spreads entre taxas juro ativas e taxas de juro passivas

Alteração do volume de ativos remunerados

Alteração do volume de passivos remunerados

Alteração do mix de ativos remunerados e passivos remunerados, nomeadamente entre taxas de juro fixas vs. taxas de juro variáveis; entre curto prazo vs. longo prazo; entre taxas de juro mais elevadas e taxas de juro mais baixas.

FORMULA DETALHADA DA MARGEM FINANCEIRA

 $Margem\ Financeira\ = Juros\ e\ rendimentos\ similares\ -\ Juros\ e\ encargos\ similares$ $MF\ = JRS-\ JES$

 $JRS = Taxa de juro variável \times Volume de RSA + Taxa de juro fixa \times Volume de ativos (non - rate sensitive)$

 $JES = Taxa de juro variável \times Volume de RSL + Taxa de juro fixa \times Volume de Passivos (non - rate sensitive)$

O GAP ACUMULADO MEDE APROXIMADAMENTE O IMPACTO DE ALTERAÇÃO DA TAXA DE JURO NA MARGEM FINANCEIRA

 Δ MF periódica = $\Delta r \times GAP$ Periódico (em EUR) \times Tempo

 Δ MF acumulada = $\Delta r \times GAP$ Acumulado (em EUR) \times Tempo

	< 1mês	1-3 meses	4-6 meses	7-12 meses	Total Ano
GAP (1000 €)	5 000 €	-15 000 €	-20 000 €	25 000 €	
Alteração taxa de juro em basis point	1%	1%	1%	1%	
Tempo até ao final do ano	11,5	10	7,5	3	
Impacto anualizado na MF (1000€)	47,9 €	-125,0 €	-125,0 €	62,5 €	-139,6 €

Pressupô-se que a alteração de juro se deu no meio de cada periodo

PROBLEMAS NA UTILIZAÇÃO DO GAP COMO INSTRUMENTO DE GESTÃO DO RISCO DE TAXA DE JURO

- 1. As taxas de juro ativas e passivas não se movem com a mesma velocidade das taxas de juro do mercado. O pressuposto no cálculo é que todos os ativos e passivos são afetados em simultâneo (no principio, no fim ou no meio do período) e com a mesma variação de taxa de juro.
- 2. Os gastos com juros (sobre os passivos) tende a alterar-se mais rapidamente do que os rendimentos de juros (sobre os ativos detidos) e com variações distintas consoante os prazos de maturidade e consoante a perceção de risco do mercado
- 3. Até que ponto alguns ativos e passivos serão valorizados / desvalorizados nem sempre é fácil identificar
- 4. O GAP não considera impactos diretos que a alteração das taxas de juro podem ter sobre o capital próprio
- 5. Os quadros de GAP também não incluem contratos de novos de ativos e novos passivos (i.e. renovação de débitos e créditos em novas condições).

RESUMO DA GESTÃO DO GAP GAP RISCO

ISA>ISL
(I.E. ASSET SENSITIVE)

Risco se a taxa de juro cair

Se a taxa de juro cair os rendimentos de juros caem mais que os gastos com juros e consequentemente a margem financeira cai

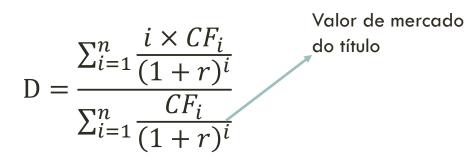
GESTÃO

- Não fazer nada se a expectativa for de subida da taxa de juro ou manterse estável
- Aumentar a maturidade dos ativos ou reduzir a maturidade dos passivos
- Aumentar o volume de Interest-Sensitive Liabilities ou reduzir o volume de Interest-Sensitive Assets

ISA<ISL
(I.E. LIABILITIES SENSITIVE)

Risco se a taxa de juro subir

Se a taxa de juro subir os gastos com juros sobem mais que os rendimentos de juros e consequentemente a margem financeira cai


- Não fazer nada se a expectativa for de descida da taxa de juro ou manter-se estável
- Encurtar a maturidade dos ativos ou aumentar a maturidade dos passivos
- Reduzir o volume de Interest-Sensitive Liabilities ou aumentar o volume de Interest-Sensitive Assets

DURAÇÃO MACAULEY E DURAÇÃO MODIFICADA

A DURAÇÃO COMO INSTRUMENTO DE GESTÃO DO RISCO

- 1. A Duração é um conceito veio substituir o conceito de maturidade média, considerado uma métrica inadequada da sensibilidade do valor de um título pois ignora os efeitos dos fluxos de caixa dos cupões e dos reembolsos de capital.
- 2. A Duração pode ter duas interpretações:
 - O tempo médio esperado até que um investidor tenha o seu capital investido (crédito, obrigações, etc.) totalmente devolvido. Isto é, mede o tempo (anos) em que o detentor de um título ou uma carteira está exposto ao risco de variações nas taxas de juros que poderão impactar nos seus fluxos de caixa futuros.
 - A sensibilidade que o valor do crédito, do título ou da carteira de títulos têm a oscilações das taxas de juro no mercado.
- 3. A <u>Duração</u> pondera o prazo médio de recebimento dos fluxos de caixa pelo valor atual desses fluxos.
- 4. A sensibilidade do valor a alterações da taxa de juro é medida pela <u>Duração</u> <u>Modificada</u>

A DURAÇÃO (É A DURAÇÃO DE MACAULAY)

Exemplo:

Valor nominal da obrigação	100,00€
Taxa de juro cupão	5,00%
Taxa de juro de mercado	4,00%
Maturidade (Anos)	3

Pagamento de cupão anual e reembolso na maturidade:

A	C ~ -	Reembolso	Fluxo de	\/A:	:\/A:
Anos	Cupão	de Capital	Caixa	VAi	i x VAi
1	5,00€		5,00€	4,81€	4,81€
2	5,00€		5,00€	4,62 €	9,25€
3	5,00€	100,00€	105,00€	93,34 €	280,03€
_			Soma	102,78€	294,09 €
			_	Duração	2,8615

Obrigação de cupão zero:

		Reembolso	Fluxo de		
Anos	Cupão	de Capital	Caixa	VAi	i x VAi
1			0,00€	0,00€	0,00€
2			0,00€	0,00€	0,00€
3		115,76 €	115,76 €	102,91€	308,74 €
			Soma	102,91€	308,74 €
				Duração	3,0000

A duração é sempre inferior à maturidade, exceto para a obrigação de cupão zero que é igual à maturidade

QUE PODE SER USADA PARA APROXIMADAMENTE CALCULAR A VARIAÇÃO DO VALOR DO TÍTULO

A duração de Macauley pode ser vista como a elasticidade do preço da obrigação relativamente à taxa de atualização

$$\frac{\Delta B/B}{\Delta r/(1+r)} \sim -D$$

Daqui resulta que se pode medir a volatilidade do valor da obrigação:

$$\frac{\Delta B}{B} \sim -D \times \frac{\Delta r}{(1+r)}$$
 e $\Delta B \sim -D \times B \times \frac{\Delta r}{(1+r)}$

$$\Delta B \sim -\frac{D}{(1+r)} \times B \times \Delta r$$
 MD = alteração % do valor do título face a alteração de 1% na taxa de juro

Duração Modificada

CALCULO DA VARIAÇÃO DO VALOR DO TÍTULO FACE A UMA VARIAÇÃO DA TAXA D JURO

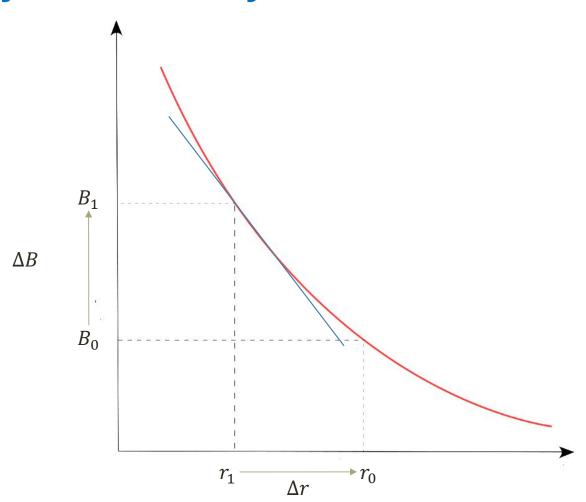
Exemplo inicial:

Valor nominal da obrigação	100,00€
Taxa de juro cupão	5,00%
Taxa de juro de mercado	4,00%
Maturidade (Anos)	3

			Reembolso	Fluxo de		
Anos		Cupão	de Capital	Caixa	VAi	i x VAi
1	L	5,00€		5,00€	4,81€	4,81€
2	2	5,00€		5,00€	4,62 €	9,25€
3	3	5,00€	100,00€	105,00€	93,34 €	280,03 €
				Soma	102,78€	294,09 €
					Duração	2,8615

Redução de taxa de juro de 0,25%:

Valor nominal da obrigação	100,00€
Taxa de juro cupão	5,00%
Taxa de juro de mercado	3,75%
Maturidade (Anos)	3


		Reembolso	Fluxo de	
Anos	Cupão	de Capital	Caixa	VAi
1	5,00€		5,00€	4,82 €
2	5,00€		5,00€	4,65 €
3	5,00€	100,00€	105,00€	94,02 €
			Soma	103,49€

Variação do valor= 0,71€

$$\Delta B \sim -D \times B \times \frac{\Delta r}{(1+r)} = -2,8615 \times 102,78 \in \times \frac{-0,25\%}{(1+4\%)} = 0,71 \in$$

Para pequenas variações de taxas de juro a formula é exata. Para grandes variações é aproximada

A ELASTICIDADE É UMA TANGENTE NO PONTO. PARA PEQUENAS VARIAÇÕES DE r A VARIAÇÃO DE B É MUITO APROXIMADA

INCONVENIENTES DA DURAÇÃO MODIFICADA

Embora a duração modificada seja melhor que a duração de Macaulay, ela possui algumas deficiências:

Pressupõe que o preço do título muda de igual modo para um aumento ou diminuição da taxa de juro. O que não é verdade, pois é necessário ajustar o efeito de convexidade.

Mede a sensibilidade com referência à yield to maturity e não a estrutura geral da yield curve.

DURAÇÃO E IMUNIZAÇÃO DO RISCO DE TAXA DE JURO NA BANCA

A DURAÇÃO PARA ANÁLISE DE IMPACTO PREVISIONAL SOBRE O VALOR DO CAPITAL PRÓPRIO DO BANCO

$$CP = A - P$$

Alterações da taxa de juro impactam sobre o valor doa ativos e passivos e, consequentemente, sobre o valor do capital próprio

$$\Delta CP = \Delta A - \Delta P$$

EXEMPLO: ANÁLISE DA SENSIBILIDADE DE VALOR DO CAPITAL PRÓPRIO A UM ACRÉSCIMO DE 1% NA TAXA DE JURO

	Ativos	
	Remunerados	Passivos
Valor de carteira	900 000 €	800 000 €
Yield da carteira	4,0%	3,0%
Duração da carteira (anos)	8	3

$$\Delta CP \sim -\frac{D_A}{(1+r_A)} \times A \times \Delta r_A - \left(-\frac{D_P}{(1+r_P)} \times P \times \Delta r_P\right)$$

$$\Delta CP \sim -\frac{8}{(1+4\%)} \times 900.0000 \in \times 1\% - \left(-\frac{3}{(1+3\%)} \times 800.0000 \in \times 1\%\right)$$

EXEMPLO: COMO IMUNIZAR?

Uma hipótese seria aumentar a duração média dos passivos:

	Ativos	
	Remunerados	Passivos
Valor de carteira	900 000 €	800 000 €
Yield da carteira	4,0%	3,0%
Duração da carteira (anos)	8,0000	8,9135

$$\Delta CP \sim -\frac{D_A}{(1+r_A)} \times A \times \Delta r_A - \left(-\frac{D_P}{(1+r_P)} \times P \times \Delta r_P\right)$$

$$\Delta CP \sim -\frac{8}{(1+4\%)} \times 900.0000 \in \times 1\% - \left(-\frac{8,9135}{(1+3\%)} \times 800.0000 \in \times 1\%\right)$$

$$\Delta CP \sim (-69.231 \in) - (-69.231 \in) = 0 \in$$

Também poderia alterar a duração dos ativos, o volume dos ativos, o volume dos passivos, renegociação de taxas de juro ou um híbrido disto tudo

CONCLUSÃO: IMPACTO DE UMA VARIAÇÃO DA TAXA DE JURO DE MERCADO NO VALOR DA CARTEIRA

- Se a taxa de juro subir, o valor de mercado dos ativos e passivos com taxa de juro fixa, diminui
- 2. Quanto maior for a maturidade destes ativos e passivos maior será a redução de valor de mercado face a um aumento da taxa de juro de mercado
- 3. Equalizando as durações modificadas dos ativos e passivos ponderadas pelo valor desses ativos e passivos, consegue-se balancear a maturidade média dos in-fluxos de caixa esperados dos ativos e dos ex-fluxos de caixa dos passivos
- 4. Assim, a duração é um instrumento de imunização do valor do capital próprio de um banco